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Abstract
We quantify the total, quantum and classical correlations with entropic
measures, and quantitatively compare these correlations in a quantum system,
as exemplified by a Heisenberg dimer which is subjected to the change of
environmental parameters: temperature and nonuniform external field. Our
results show that the quantum correlation may exceed the classical correlation
at some nonzero temperatures, though the former is rather fragile than the
latter under thermal fluctuation. The effect of the external field to the classical
correlation is quite different from the quantum correlation.

PACS numbers: 03.67.Mn, 03.65.Ud, 75.10.Jm

1. Introduction

Correlation effect plays an important role in physical phenomena. Many interesting properties
of the quantum systems are attributed to the existence of the entanglement [1], which is
intrinsically related to the superposition principle of quantum mechanics and the direct product
structure of the Hilbert space [2, 3]. Entanglement is a kind of pure quantum correlation
which does not exist in any classical systems, and regarded as a significant resource in
quantum information processing, such as quantum teleportation, dense coding and quantum
cryptography [4].

Due to the central role of the entanglement in quantum information, various issues on
the entanglement have been studied intensively in the recent 15 years. Among these issues,
the effects of environmental parameters (such as thermal fluctuation and external field) on the
entanglement in quantum spin systems have attracted much attention [5–9]. Moreover, some
interesting properties of the entanglement which are beyond the traditional physical intuition
were found. For example, the thermal fluctuation can enhance the entanglement in some
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special cases; the external field does not always suppress the entanglement [9]. Therefore,
these studies shed new light on our understanding of the entanglement.

However, besides the quantum entanglement, a quantum system possesses the classical
correlation [10, 11]. A simple example is the spin singlet state (|↑↓〉 − |↓↑〉)/√2, besides the
entanglement with value 1, the state also has the classical correlation of value 1 (see section 2).
Another example is the mixed state with the density matrix as ρ = (|↑↑〉〈↑↑| + |↓↓〉〈↓↓|)/2.
In this state, the quantum correlation between two spins is zero, while the classical correlation
is 1. Therefore, some interesting questions arise. For example, what is the difference between
the classical correlation and the quantum correlation in a realistic system? Is the classical
correlation always larger than the quantum one? Why do we live in a classical world rather
than a quantum world? etc. Answering these questions from the point of view of different
correlations is our main motivation in this work.

Our paper is organized as follows. In section 2, we define the measurements of total,
quantum and classical correlations. In section 3, we use a Heisenberg dimer which interacts
with the thermal environment as an example to study the effects of the temperature, external
fields and anisotropic interaction on the correlations. Finally, a summary is given in section 4.

2. Definitions and measures of bipartite correlations

2.1. Total correlation

In the quantum information theory [2], for two subsystems 1 and 2, the mutual information is
defined as

S(1 : 2) = S(1) + S(2) − S(1 ∪ 2), (1)

where S(i) = −tr(ρi log2 ρi), i = 1, 2, 1 ∪ 2, is the entropy of the corresponding reduced
density matrix. Since the entropy is used to quantify the physical resource (in unit of classical
bit due to log2 in its expression) needed to store information of a system, the mutual entropy
then measures the additional physical resource required if we store two subsystems respectively
rather than store them together. Let us look at a very simple example: a two-qubit system
in a singlet state (|↑↓〉 − |↓↑〉)/√2. We have S(1) = S(2) = 1 and S(1 ∪ 2) = 0, hence
S(1 : 2) = 2. Obviously, there is no information in a given singlet state. However, each spin
in this state is completely uncertain. So we need two bits to store them respectively. Here
the mutual information is twice the entanglement, as measured by the von Neumann entropy
of either subsystem. This is due to the reason that besides quantum correlation, the state has
also classical correlation between the two subsystems. Therefore, the mutual information can
be used to measure the total correlation between two subsystems. We will call the quantity
S(1 : 2) the ‘total correlation entropy’ or simply ‘total correlation’ hereafter.

2.2. Quantum correlation

The quantum correlation only exists in the quantum world, and usually is called entanglement.
For a bipartite state, there are a few measures to quantify the entanglement of a general mixed
state [12]. Among the measures, the entanglement of formation [13] is well known and a
analytic formula for a two-qubit system is found [14]. Consider a density matrix ρ of two
subsystems 1 and 2. There are infinite pure-state ensembles {ψi, pi} of ρ, where pi is the
probability of ψi , such that

ρ =
∑

i

pi |ψi〉〈ψi |. (2)
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For each pure state |ψi〉, the entanglement E is measured by the von Neumann entropy [15].
Then the entanglement of formation Ef of the density matrix ρ is the average entanglement
of the pure states of the decomposition, minimized over all the possible ensembles:

Ef (ρ) = min
∑

i

piE(ψi). (3)

(Note that if the system is in a pure state, Ef is just E.) For a mixed state, it is usually difficult to
evaluate Ef . However, for a two-qubit system, it can be readily obtained from the concurrence
of the system. Given the density matrix ρ of the pair qubits, the concurrence is given by [14]

C = max{λ1 − λ2 − λ3 − λ4, 0}, (4)

where λi are the square roots of the eigenvalues of the operator

� = ρ
(
σ

y

1 ⊗ σ
y

2

)
ρ∗(σy

1 ⊗ σ
y

2

)
, (5)

with λ1 � λ2 � λ3 � λ4, σ
y

i are the normal Pauli operators, and ρ∗ is the complex conjugate
operator of ρ. The entanglement of formation can then be evaluated as [14]

Ef = h

(
1 +

√
1 − C2

2

)
,

h(x) = −x log2 x − (1 − x) log2(1 − x).

(6)

Ef is monotonically increasing and ranges from 0 to 1 as C goes from 0 to 1. Ef = C = 0
if the system is unentangled and Ef = C = 1 if it is maximally entangled. In fact, one can
take the concurrence itself as a measurement of entanglement. Since the mutual information
has the unit of bit, for comparison purposes, we will take the entanglement of formation instead
of concurrence to be our measurement standard in this paper. We will call the quantity Ef the
‘quantum correlation entropy’ or simply ‘quantum correlation’ hereafter.

2.3. Classical correlation

The classical correlation of a bipartite system is defined in different scenarios [10, 11]. The
measure defined in [10] reflects the effect of one party’s measurement on the other party’s
state. The measure defined in [11] attempts to explain the total correlation coming from the
quantum part and the classical part based on the distance concept of relative entropy. Both
these two measures coincide in the case of pure states. Consider a pure state of a bipartite
system, |ψ〉 = ∑

i αi |ui〉⊗|vi〉 upon Schmidt decomposition. The quantum correlation actually
defines the amount of immediate effect on one subsystem during the performing measurement
on another subsystem. For the pure state, it is just the entropy of one subsystem. After the
measurement, the density matrix becomes diagonal in the basis of the Schmidt decomposition.
Then the classical correlation between these two subsystems corresponds to the maximum
amount of change of uncertainty in one subsystem after knowing some new information of
another subsystem through a classical channel. Such a correlation equals the entropy of one
subsystem too. For the mixed state, the total correlation cannot neatly be divided into the
quantum part and the classical part. These two parts are much more ‘entangled’ with each
other.

In this paper, we follow the lines of [11]. That is, roughly speaking, the total correlation
comes from the quantum part and the classical one. Intuitively, the quantum correlation is
more flimsy than the classical one, and the classical correlation should be larger than the
quantum correlation in the mixed state. An obvious instance is that for the separable state,
there is no entanglement while classical correlation exists, in which case all the total correlation
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comes from the classical part. Is it possible that the quantum correlation is larger than the
classical part? For this purpose, we would like to adopt the quantum entanglement measure
as large as possible. It is proved that all the reasonable entanglement measures are not larger
than the entanglement of formation [16]. So, we take the entanglement of formation as the
quantum correlation and the classical correlation is defined as the total correlation minus
the quantum part. Before we discuss the main result, we argue that the total correlation
minus the entanglement of formation is the non-erasable correlation under the constraint that
entanglement is preserved. Recall that the entanglement of formation is originally proposed
to describe the process of preparation of an entangled state under local operation and classical
communication (LOCC). From equation (3), we can see that the entanglement of formation
corresponds to a specified decomposition of the density matrix. In experiment, to have a given
decomposition, one of experimentalists, say Alice, prepares the states {|ψi〉} according to the
probability distribution {pi}. Therefore, the actual state that describes the initial state of the
preparation process is

ρ̄ =
∑

i

pi |i〉〈i| ⊗ |ψi〉〈ψi |, (7)

where {|i〉} are the flags, a set of orthogonal basis for Alice to distinguish |ψi〉. After
compression, Alice sends the subsystem through an ideal quantum channel to the another
experimentalist Bob who needs to know which one he receives because in general he cannot
decompress the state without destroying the entanglement of the state. He requires the
information to distinguish |ψi〉. Therefore, the flag states are also needed to be sent though
this task does not require an ideal quantum channel. A classical channel is enough. In order
to obtain the goal state ρ from the prepared state ρ̄, both Alice and Bob are required to erase
the flag memory which is used to store the information of the set of orthogonal basis. This
procedure decreases the classical correlation but preserves the entanglement of formation.
However any more information cannot be erased further or entanglement will be destroyed.
Therefore, the remaining part of the correlation represents the non-erasable classical correlation
between the two subsystems ρ under the preservation of quantum correlation, and is calculated
as

SC = S(1 : 2) − Sf . (8)

In short, we argue that the mutual information is taken as the total correlation, the
entanglement of formation is taken as the quantum correlation and the difference of them
is the classical correlation in the meaning of non-erasable classical correlation. Especially
for an arbitrary two-qubit system, the total, quantum and classical correlations can be easily
calculated and we can compare the quantum correlation and the classical one quantitatively.

3. Environment’s effects on correlations

In this section, we use the Heisenberg dimer as a prototype model to show the interesting
behavior of the total, quantum and classical correlations under different environments. The
model Hamiltonian reads

H = J

[
1 − γ

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

)
+

1 + γ

2
σ z

1 σ z
2

]
+ B1σ

z
1 + B2σ

z
2 , (9)

where σα
i (α = x, y, z) are the Pauli matrices, J is the strength of Heisenberg interaction, and

B1, B2 are the external magnetic fields. For simplicity, we choose J as the energy unit. The
parameter γ , which ranges from −1 to 1, adjusts the anisotropic interaction.
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3.1. The anisotropic Heisenberg model

We first consider the case of B1 = B2 = 0. The eigenstates and eigenvalues are

|ψ0〉 = 1√
2
(|↑↓〉 − |↓↑〉), E0 = −3 + γ

2
,

|ψ1〉 = 1√
2
(|↑↓〉 + |↓↑〉), E1 = 1 − 3γ

2
,

|ψ2〉 = |↑↑〉, E2 = 1 + γ

2
,

|ψ3〉 = |↓↓〉, E3 = 1 + γ

2
.

(10)

The ground state is |ψ0〉 for γ 	= 1. At the thermal equilibrium, the density matrix of the
system is

ρ(T ) = η




e
−(1+γ )

T 0 0 0

0 cosh 1−γ

T
−sinh 1−γ

T
0

0 −sinh 1−γ

T
cosh 1−γ

T
0

0 0 0 e
−(1+γ )

T


 , (11)

where the Boltzmann constant kB is set as one and

η = 1

2
[
cosh 1−γ

T
+ e−(1+γ )/T

] .

From the density matrix (11), the total, quantum and classical correlations can be calculated
directly. The results are shown in figure 1. We see several interesting features from this figure.
First, at a high temperature, all correlations approach zero. This is because the occupation
probabilities of the unentangled states will be enhanced and the correlations will be diluted.
The thermal fluctuation is the leading effects. Second, at a certain temperature range, the
classical correlation exceeds the quantum correlation. This is obvious in cases of small γ

(figures 1(a) and (b)). Third, when γ is close to 1 (figure 1(c)), the classical correlation may
exhibit a local minimum at a low temperature. It is worth noting that the quantum correlation
is smaller for a larger γ . The physical interpretation is that a larger γ corresponds to a
more classical model, hence less amount of entanglement. When γ reaches 1, the quantum
correlation vanishes for all temperatures (figure 1(d)). This is expected because when γ = 1
all eigenstates of the Hamiltonian are unentangled states; hence the resulting density matrix
ρ(T ) is separable for all temperature.

The above features can be illustrated more clearly by defining a threshold temperature
Tth, which is a function of γ . Above Tth, the quantum correlation completely vanishes. The
quantum correlation reaches zero when the concurrence reaches zero. From equations (4), (5)
and (11), the concurrence of the system is

C = max

{
sinh 1−γ

T
− e−(1+γ )/T

cosh 1−γ

T
+ e−(1+γ )/T

, 0

}
.

The C = 0 requires sinh 1−γ

T
� e−(1+γ )/T . Then the threshold temperature Tth should satisfy

γ = Tth

2
ln(e2/Tth − 2). (12)
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(a) (b)

(c) (d )

Figure 1. The total correlation S(1 : 2), quantum correlation Ef and classical correlation SC

versus temperature T, in the anisotropic Heisenberg dimer with different values of parameter γ .
In figure (d), the Ef = 0 and the curves of S(1 : 2) and SC are overlap. (a) γ = −1, (b) γ = 0,
(c) γ = 0.9 and (d) γ = 1.

Figure 2. The threshold temperature Tth versus anisotropic parameter γ in the Heisenberg dimer.
The quantum correlation of the system vanishes if T > Tth.

The plot of Tth versus γ is shown in figure 2. It is obvious that Tth drops when γ increases.
From figure 2, we can divide the whole plane into two regions. Below the line of Tth, the
system has both quantum and classical correlations, while above the line, the system has only
classical correlation.
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3.2. The XY model with a nonuniform magnetic field

Now we investigate the correlation effects of the external magnetic fields. We only consider
the case γ = −1 and other γ can be obtained similarly. Then the eigenstates and eigenvalues
of the Hamiltonian are

|	1〉 = |↑↑〉, E1 = B1 + B2,

|	2〉 = |↓↓〉, E2 = −(B1 + B2),

|	±〉 = 1

N±

[
(B1 − B2) ± √

D

2
|↑↓〉 + |↓↑〉

]
,

E± = ±
√

D,

(13)

where D = (B1 − B2)
2 + 4 and N± are the normalization factors. The thermal equilibrium

state can be described by the density matrix

ρ(T ) = 1

Z




d 0 0 0
0 b − c −s 0
0 −s b + c 0
0 0 0 d−1


 , (14)

where Z = 2{cosh[(B1 + B2)/T ] + cosh(
√

D/T )}, b = cosh(
√

D/T ), c = sinh(
√

D/T )

(B1 − B2)/
√

D, s = 2sinh(
√

D/T )/
√

D and d = exp [−(B1 + B2)/T ].
We first study the correlations under uniform magnetic fields at finite temperatures. The

results are shown in figures 3(a)–(d). Clearly, if B1 is small, the ground state |	−〉 is a
superposition of two antiferromagnetic bases, and is entangled. If the system is subject to a
thermal environment, the contribution from the other eigenstates (two of them are separable)
will suppress both the quantum and classical correlations. However, if B1 is large enough,
the ground state becomes |	2〉, which is fully polarized and not entangled. The classical
correlation, whose value is equal to the quantum one for a pure state, is also zero. The
thermal fluctuation, as can be seen from figures 3(c) and (d), increases both the quantum
and classical correlations at low temperatures. Moreover, an interesting observation is that
there exists a range where the quantum correlation exceeds the classical one. In addition,
the larger the external field the smaller the quantum correlation. It is because a large-field
setting corresponds to a more classical model. It may be interesting to note that the threshold
temperature of the quantum correlation is independent of the field [9]. All three correlations
approach or equal zero at high temperatures.

If the directions of the two external fields are opposite to each other and the strengths are
the same, we find that all the total, classical and quantum correlations show comparatively
gentle changes against the temperature and fields (figures 4(a) and (b)). The figure is not
difficult to interpret, as we argued for the case of B1 = B2. The main difference is that a
larger B1 here may lead to a higher threshold temperature Tth. In order to see the role of
the nonuniform field, we show three correlations against fields at some fixed temperatures
in figure 5. (The results of quantum correlation, which have already been obtained by Sun
et al [9], are also presented for comparison.) At a low temperature, we note that the three
correlations are sharply peaked at zero fields. They decay rapidly with the increasing fields
if the fields have the same direction, while decay comparatively slowly if the fields have
opposite directions. This means that the correlation effects can be adjusted by the uniform
fields. At some higher temperature, the peak of the quantum correlation splits into two in the
region B1B2 < 0 (figure 5(b)). Therefore, the nonuniform fields may enhance the quantum
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(a) (b)

(c) (d )

Figure 3. The total correlation S(1 : 2), quantum correlation Ef and classical correlation SC

versus temperature T, in the XY model under a uniform magnetic field B1 = B2. Varying the
strength of the fields, four typical cases are shown: (a) B1 = B2 = 0.5, (b) B1 = B2 = 0.95,
(c) B1 = B2 = 1.05 and (d) B1 = B2 = 1.5.

(a)
(b)

Figure 4. The total correlation S(1 : 2), quantum correlation Ef and classical correlation SC

versus temperature T, in the XY model under a nonuniform field: (a) B1 = 0.5, B2 = −0.5 and
(b) B1 = 2, B2 = −2.

correlation, while the uniform fields always destruct it. At a very high temperature, the peaks
are completely separated as shown in figure 5(c). A region with zero quantum correlation
appears between the peaks. This implies that the nonuniform field can be used as a switch
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(a) (b) (c)

Figure 5. (From top to bottom) the total correlation S(1 : 2), quantum correlation Ef and classical
correlation SC versus the external magnetic fields B1 and B2 at different fixed temperatures T in
the XY model. Three typical cases are shown in different columns: (a) T = 0.3, (b) T = 1.6 and
(c) T = 2.5.

to turn on and off the quantum correlation [9]. Meanwhile, unlike the quantum correlation,
the classical correlation always decreases with the increasing external magnetic fields, which
means that the external magnetic fields have different effects to the quantum correlation and
to the classical correlation.

4. Discussions and summary

In this paper, we provide quantification of the total, quantum and classical correlations in
a general bipartite system. In order to see their properties in a realistic system, we study
them in an anisotropic Heisenberg model at finite temperatures. We find that the quantum
correlation always decreases with increasing temperature, while the classical one may increase
in some temperature range. More interestingly, the classical correlation is not always larger
than the quantum one, which actually is beyond the general physical intuition [11]. We also
investigate the three correlations in the XY model under a nonuniform magnetic field. We
find that the fields may enhance the quantum correlation, which is very different from the
effect of fields to the classical correlation. In short, our results imply that the environmental
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parameters (temperature, magnetic fields) demonstrate obviously different effects to the
quantum correlation and the classical correlation.
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